The Heart Failure Management Paradigm: From the Emergency Department to Hospital Admission and Discharge

In collaboration with

Support made possible through an educational grant from Novartis Pharmaceuticals

Co-Chairs

Muhammad Waqas Athar, MD, MBBS Instructor of Medicine Johns Hopkins Bayview Medical Center Baltimore, MD Phillip D. Levy, MD, MPH Professor of Emergency Medicine Department of Emergency Medicine and Cardiovascular Research Institute Wayne State University School of Medicine Detroit, MI

Presenting Faculty

Heather M. Prendergast, MD, MS, MPH, FACEP Professor, Vice Chair of Academic Affairs Department of Emergency Medicine University of Illinois Medical Center Chicago, IL

Faculty disclosure information provided in handout.

Sacubitril, which is now coformulated with valsartan in a new combination medication, takes action via a novel pathway by inhibiting neprilysin, which breaks down brain (or B-type) natriuretic peptide (BNP). Which of the following statements is *false* regarding neprilysin?

- A. Neprilysin breaks down atrial natriuretic peptide (ANP), BNP, and C-type natriuretic peptide (CNP)
- B. Neprilysin is an enzyme
- C. N-Terminal pro-BNP (NT-proBNP) is not a substrate for neprilysin
- D. In a clinical trial, valsartan/sacubitril *decreased* BNP levels but *increased* NT-proBNP levels

Which of the following acute heart failure treatments has class I, level A (the best!) supporting evidence?

- A. Angiotensin-converting enzyme (ACE) inhibitors
- B. Nitroglycerin
- C. Furosemide
- **D**. None of the above
- E. A, B, and C

Pre-Activity Assessment Question 3

A 67-year-old man with a history of HFpEF, hypertension (HTN), COPD, and morbid obesity presents short of breath (SOB) and 10 lb heavier. No wheezing; no URI complaints. Heart rate, 87 bpm; BP, 157/85; oxygen saturation, 87% right atrial (RA). No wheezing on exam. Labs show a Cr of 1.1, a troponin of <0.02, and an NT-proBNP level of 288 (previous level was 9000 during a prior hospitalization). CTA of chest was negative for pulmonary embolism (PE) and pneumonia. After providing supplemental oxygen with a nasal cannula, what would be the next best step?

- A. High-dose intravenous (IV) diuretics
- B. IV vasodilator
- C. Steroid, antibiotic, and bronchodilator therapy
- D. Noninvasive positive pressure ventilation

BP=blood pressure; bpm=beats per minute; BUN=blood urea nitrogen; COPD=chronic obstructive pulmonary disease; Cr=creatinine; CTA=computed tomography angiography; HFpEF=heart failure with preserved ejection fraction; URI=upper respiratory tract infection.

Pre-Activity Assessment Question 4

Which of the following would be an example of an acute HF patient who could be placed in an observation unit?

- A. A 60-year-old man with a history of myocardial infarctions (MIs) and renal insufficiency who is confused and has cool, mottled extremities.
- B. An 84-year-old woman with minimal residual dyspnea post treatment who has mild dementia and lives by herself.
- C. A 63-year-old woman accompanied by her son (with whom she lives) who responds well to emergency department (ED) treatment and has no high-risk features identified during ED evaluation.
- D. A 71-year-old man who, after treatment in the ED, remains markedly hypertensive with significant dyspnea at rest.

- Identify heart failure (HF) patients by their clinical profiles and phenotypes and assess comorbid conditions
- Produce the diagnosis of acute heart failure (AHF) based on clinical presentation, history, laboratory assessment, and radiographic findings
- Integrate the data of related clinical trials and the evidence to support the use of current therapies as well as novel therapies that are in development for AHF
- Collaborate with the interdisciplinary team to properly assess when HF patients need to be admitted to the hospital, placed in observation status, or discharged
- Distinguish the importance of early re-initiation of guideline-directed medical therapy, including beta blockers, and discuss the initiation or continuation of newer FDA-approved treatments for patients admitted to the hospital or placed in observation status
- Describe evidence-based practices, including methods to improve care transitions for AHF patients once they are ready for discharge from the hospital

Introduction to the Epidemic

AHA Statistical Update—Heart Disease and Stroke Statistics 2014 Update

825,000 new HF cases annually

 At 40 years of age, the lifetime risk of developing HF for both men and women is 1 in 5

 The lifetime risk for people with BP >160/90 mm Hg is double that of those with BP <140/90 mm Hg

AHA=American Heart Association. Go AS, et al. *Circulation*. 2014;129(3):e28-e292.

Median Survival

AHA Statistical Update—Heart Disease and Stroke Statistics 2014 Update

Hospital discharges for heart failure by sex (United States: 1980-2010)

The Burden of Acute Heart Failure on US Emergency Departments

Storrow AB, et al. JACC Heart Fail. 2014;2(3):269-277.

Emergency Room Doctors Are Risk-Averse!

Early Deaths in Patients With Heart Failure Discharged From the Emergency Department: A Population-Based Analysis

Rehospitalizations Among Patients in the Medicare Fee-for-Service Program

	Percent		Most Frequent	Second Most Frequent				
MEDICAL								
All	21.0	77.6	Heart failure (8.6)	Pneumonia (7.3)				
Heart failure	26.9	7.6	Heart failure (37.0)	Pneumonia (5.1)				
Pneumonia	20.1	6.3	Pneumonia (29.1)	Heart failure (7.4)				
COPD	22.6	4.0	COPD (36.2)	Pneumonia (11.4)				
Psychoses	24.6	3.5	Psychoses (67.3)	Drug toxicity (1.9)				
GI problems	19.2	3.1	GI problems (21.1)	Nutrition-related or metabolic issues (4.9)				
SURGICAL	SURGICAL							
All	15.6	22.4	Heart failure (6.0)	Pneumonia (4.5)				

COPD=chronic obstructive pulmonary disease; GI, gastrointestinal. Jencks SF, et al. *N Engl J Med.* 2009;360:1418-1428.

Readmission Risk After Heart Failure Hospitalization

Median Time from Hospital Discharge

The Relationship Between Hospital Admission Rates and Rehospitalizations

Predictor	30 Days After Index Discharge		60 Days Index Di	s After scharge	90 Days After Index Discharge					
	Univariate Analysis	Multivariate Analysis*	Univariate Analysis	Multivariate Analysis*	Univariate Analysis	Multivariate Analysis*				
		Percent of variance in readmission rates explained								
Congestive heart failure	Congestive heart failure									
Case mix	11.0	2.6	15.0	2.4	17.8	3.1				
Discharge planning	10.5	1.0	12.9	1.0	12.9	1.0				
HRR-level supply variables										
PCPs per 100,000 population	0.1	0.5	0.3	0.7	0.4	0.6				
Cardiologists per 100,000 population	11.6	0.8	13.6	1.0	15.4	1.9				
Hospital beds per 1000 population	5.6	0.7	8.1	0.2	8.9	0.4				
All-cause admission rate	27.5	16.0	33.5	20.4	37.4	23.6				

HRR=hospital referral region; PCPs=primary care physicians. Epstein AM, et al. *N Engl J Med*. 2011;365:2287-2295.

Aiming for Fewer Hospital U-Turns: The Medicare Readmission Reduction Program

Performance (measurement) Time Period

Boccuti C, Casillas G. http://kff.org/medicare/issue-brief/aiming-for-fewer-hospital-u-turns-the-medicare-hospital-readmission-reduction-program/. January 29, 2015.

Going Back to the Hospital

Rates of 'readmissions' and 'observation stays' within 30 days of a hospitalization

Weaver C, et al. Wall Street Journal. December 1, 2015. http://www.wsj.com/articles/medicare-rules-reshape-hospital-admissions-1449024342.

Evaluating Acute Heart Failure Patients in the ED—Initial Approach

Recognizing Acute Heart Failure (AHF)

Pang PS, et al. *Eur Heart J*. 2010;31:784-793.

Is Clinical Examination Really Useful?

	Poo	led	Summary Likelihood Ratio (95%		
Finding		Specificity	Positive	Negative	
Initial clinical judgment	0.61	0.86	4.4 (1.8-10.0)	0.45 (0.28-0.73)	
Physical examination					
Third heart sound (ventricular filling gallop)	0.13	0.99	11 (4.9-25.0)	0.88 (0.83-0.94)	
Abdominojugular reflux	0.24	0.96	6.4 (0.81-51.0)	0.79 (0.62-1.0)	
Jugular venous distension	0.39	0.92	5.1 (3.2-7.9)	0.66 (0.57-0.77)	
Rales	0.60	0.78	2.8 (1.9-4.1)	0.51 (0.37-0.70)	
Any murmur	0.27	0.90	2.6 (1.7-4.1)	0.81 (0.73-0.90)	
Lower-extremity edema	0.50	0.78	2.3 (1.5-3.7)	0.64 (0.47-0.87)	
Valsalva maneuver	0.73	0.65	2.1 (1.0-4.2)	0.41 (0.17-1.0)	
Systolic blood pressure <100 mm Hg	0.06	0.97	2.0 (0.60-6.6)	0.97 (0.91-1.0)	
Fourth heart sound (atrial gallop)	0.05	0.97	1.6 (0.47-5.5)	0.98 (0.93-1.0)	
Systolic blood pressure ≥150 mm Hg	0.28	0.73	1.0 (0.69-1.6)	0.99 (0.84-1.2)	
Wheezing	0.22	0.58	0.52 (0.38-0.71)	1.3 (1.1-1.7)	
Ascites	0.01	0.97	0.33 (0.04-2.9)	1.0 (0.99-1.1)	

Diagnosing Acute Heart Failure in the Emergency Department: A Systematic Review and Meta-Analysis

	No. of Studies	No. of Patients	% AHF (95% CI)	Sensitivity, % (95% Cl)	Specificity, % (95% Cl)	LR+ (95% CI)	LR– (95% CI)
Electrocardiogram			'	` 			
Ischemic changes	2	1138	42.6 (39.8-45.5)	34.0 (29.8-38.4)	84.2 (81.2-86.9)	2.9 (1.2-7.1)	0.78 (0.73-0.84)
T-wave inversion	1	709	69.4 (65.9-72.7)	10.0 (7.5-13.0)	95.9 (92.3-98.1)	2.4 (1.2-4.8)	0.94 (0.90-0.98)
Atrial fibrillation	6	2242	55.8 (53.7-57.8)	20.5 (18.3 -22.9)	89.9 (87.9-91.7)	2.2 (1.4-3.5)	0.88 (0.85-0.91)
ST depression	2	1024	60.8 (57.8-63.8)	5.6 (3.9-7.7)	96.5 (94.2-98.1)	2.0 (1.0-3.8)	0.97 (0.95-1.00)
Normal sinus rhythm	3	1207	39.6 (36.9-42.4)	55.4 (50.9-60.0)	17.8 (15.1-20.8)	0.7 (0.5-0.9)	2.88 (1.26-6.57)
ST elevation	1	219	61.2 (54.6-67.4)	5.2 (2.1-10.5)	91.8 (83.8-96.6)	0.6 (0.2-1.7)	1.03 (0.96-1.11)
Chest radiograph							
Kerley B lines	2	814	46.8 (43.4-50.2)	9.2 (6.5-12.5)	98.8 (97.3-99.6)	6.5 (2.6-16.2)	0.88 (0.69-1.13)
Interstitial edema	3	2001	48.3 (46.2-50.5)	31.1 (28.2-34.2)	95.1 (93.6-96.3)	6.4 (3.4-12.2)	0.73 (0.68-0.78)
Cephalization	5	1338	54.0 (51.3-56.6)	44.7 (41.1-48.4)	94.6 (92.6-96.3)	5.6 (2.9-10.4)	0.53 (0.39-0.72)
Alveolar edema	3	2001	48.3 (46.2-50.5)	5.7 (4.7-6.9)	98.9 (98.4-99.3)	5.3 (3.3-8.5)	0.95 (0.94-0.97)
Pulmonary edema	15	4393	46.6 (45.1-48.1)	56.9 (54.7-59.1)	89.2 (87.9-90.4)	4.8 (3.6-6.4)	0.48 (0.39-0.58)
Pleural effusion	5	1326	55.1 (52.4-57.8)	16.3 (13.7-19.2)	92.8 (90.4-94.7)	2.4 (1.6-3.6)	0.89 (0.80-0.99)
Enlarged cardiac silhouette	12	3515	51.7 (49.4-52.7)	74.7 (72.9-76.5)	61.7 (59.4-63.9)	2.3 (1.6-3.4)	0.43 (0.36-0.51)

AHF, acute heart failure; LR+, likelihood ratio of a positive test; LR–, likelihood ratio of a negative test. Martindale JL. *Acad Emerg Med*.2016;23:223-242.

Azygos

Redistribution

Pleural fluid

Pulmonary edema

Kerley lines

Increased heart size

Diagnosing Acute Heart Failure in the ED: A Systematic Review and Meta-Analysis (cont'd)

	No. of Studies	No. of Patients	% AHF (95% Cl)	Sensitivity, % (95% Cl)	Specificity, % (95% Cl)	LR+ (95% CI)	LR– (95% CI)
Lung ultrasound							
Positive B-line scan	8	1914	48.2 (46.0-50.5)	85.3 (82.8-87.5)	92.7 (90.9-94.3)	7.4 (4.2-12.8)	0.16 (0.05-0.51)
Pleural effusion(s)	2	155	40.7 (33.2-48.5)	63.5 (50.4-75.3)	71.7 (61.4-80.6)	2.0 (1.4-2.8)	0.49 (0.22-1.10)
Bedside echocardiography							
Restrictive mitral pattern	1	125	43.2 (34.9-52.0)	81.5 (68.6-90.7)	90.1 (80.7-95.9)	8.3 (4.0-16.9)	0.21 (0.12-0.36)
Reduced ejection fraction (EF)	3	325	41.2 (36.0-46.7)	80.6 (72.9-86.9)	80.6 (74.3-86.0)	4.1 (2.4-7.2)	0.24 (0.17-0.35)
Increased LV end-diastolic dimension	1	84	58.3 (47.7-68.3)	79.6 (65.7-89.7)	68.6 (50.7-83.1)	2.5 (1.5-4.2)	0.30 (0.16-0.54)

AHF, acute heart failure; LR+, likelihood ratio of a positive test; LR–, likelihood ratio of a negative test; LV, left ventricle. Martindale JL. *Acad Emerg Med*.2016;23:223-242.

Chest Ultrasonography: Another Useful Adjunct?

Gargani L, et al. Eur J Heart Fail. 2008;10:70-77.

Ultrasound Lung Comets

Normal

Acute Heart Failure

Soldati G, et al. Intern Emerg Med. 2008;3:37-41.

Diagnosing Acute Heart Failure in the ED: A Systematic Review and Meta-Analysis (cont'd)

Assay	Cutoff (pg/mL)	N	n	% AHF (95% CI)	Specificity % (95% Cl)	Specificity % (95% Cl)	LR+ (95% CI)	LR– (95% CI)
BNP								
Triage	100	19	9143	44.7 (43.7-45.8)	93.5 (92.6-94.2)	52.9 (51.6-54.2)	2.2 (1.8-2.7)	0.11 (0.07-0.16)
	200	11	3279	50.4 (48.7-52.1)	85.9 (84.2-87.6)	72.2 (69.9-74.4)	3.1 (2.3-4.0)	0.18 (0.12-0.27)
	500	8	3.915	46.7 (45.1-48.3)	67.7 (65.5-69.9)	89.8 (88.5-91.1)	9.1 (4.1-20.2)	0.34 (0.26-0.45)
AxSym	100	4	684	52.3 (48.6-56.1)	93.3 (90.2-95.7)	53.1 (47.5-58.6)	1.9 (1.5-2.4)	0.15 (0.08-0.29)
iSTAT	100	2	585	42.6 (38.6-46.6)	94.4 (90.7-96.9)	64.6 (59.2-69.7)	3.0 (1.2-7.4)	0.05 (0.02-1.23)
NT-proBNP								
Elecsys	300	10	3498	45.0 (43.4-46.7)	90.4 (88.9-91.8)	38.2 (36.0-40.4)	1.8 (1.4-2.2)	0.09 (0.03-0.34)
	1000	8	2988	44.8 (43.0-46.6)	84.8 (82.8-86.7)	65.5 (63.2-67.8)	2.7 (1.9-3.9)	0.20 (0.12-0.33)
	1550	9	3043	37.3 (35.6-39.0)	75.5 (73.4-77.9)	72.9 (70.6-75.0)	3.1 (2.3-4.3)	0.32 (0.20-0.51)
Dimension	300	1	401	30.4 (26.0-35.2)	95.9 (90.7-98.6)	48.0 (42.0-54.1)	1.9 (1.6-2.1)	0.09 (0.04-0.20)

AHF, acute heart failure; BNP, brain (or B-type) natriuretic peptide; LR+, likelihood ratio of a positive test; LR–, likelihood ratio of a negative test; NT-proBNP, N-Terminal pro-BNP. Martindale JL. Acad Emerg Med.2016;23:223-242.

Diagnosing Acute Heart Failure in the ED: A Systematic Review and Meta-Analysis (cont'd)

BNP Value (pg/mL)	Interval LR	N (%)	NT-proBNP (pg/mL)	Interval LR	N (%)
0-100	0.14 (0.12-0.18)	617 (28)	0-100	0.09 (0.05-0.17)	150 (7.5)
100-200	0.29 (0.23-0.38)	308 (14)	100-300	0.23 (0.16-0.33)	205 (10.2)
200-300	0.89 (0.67-1.17)	188 (9)	300-600	0.28 (0.20-0.39)	212 (10.5)
300-400	1.34 (0.98-1.83)	148 (7)	600-900	0.63 (0.46-0.87)	151 (7.5)
400-500	2.05 (1.47-2.84)	148 (7)	900-1500	0.84 (0.67-1.06)	249 (12.4)
500-600	3.50 (2.30-5.35)	115 (5)	1500-3000	1.49 (1.19-1.86)	273 (13.6)
600-800	4.13 (3.01-5.68)	218 (10)	3000-5000	2.36 (1.81-3.08)	225 (11.2)
800-1000	5.00 (3.21-7.89)	130 (6)	5000-10,000	2.48 (1.91-3.21)	239 (11.9)
1000-1500	7.12 (4.53-11.18)	160 (70)	10,000-15,000	2.84 (1.90-4.23)	112 (5.6)
1500-2500	8.33 (4.60-15.12)	105 (5)	15,000-30,000	2.93 (1.95-4.39)	111 (5.5)
2500-5001	8.91 (4.09-19.43)	65 (3)	30,000-200,000	3.30 (2.05-5.31)	86 (4.3)
		2202 (100)			2013 (100)

BNP=brain (or B-type) natriuretic peptide; LR=likelihood ratio; NT-proBNP=N-Terminal pro-BNP. Martindale JL. *Acad Emerg Med*.2016;23:223-242.

Natriuretic Peptide Caveats

- Relative increase in women
- Inverse relationship with body mass index (BMI)
- Higher with renal dysfunction

Potential Impact of Sacubitril/Valsartan

AC=adenylate cyclase; ANP=A-type natriuretic peptide; BNP=B-type natriuretic peptide; cAMP=cyclic adenosine monophosphate; cGMP=cyclic guanosine monophosphate; CNP=C-type natriuretic peptide; NEP=neutral endopeptidase; NP=natriuretic peptide; NPR=natriuretic peptide receptor.

Mair J, et al. [Published online January 12, 2016.] Eur Heart J Acute Cardiovasc Care. pii: 2048872615626355.

Rising Levels = Worse Prognosis

Fonarow et al. Am J Cardiol 2008;101:231-7.

Mechanism of Cardiac Troponin Release in Heart Failure

Procalcitonin Testing for Diagnosis and Short-term Prognosis in Bacterial Infection Complicated by Congestive Heart Failure

 Receiver operating characteristic curve for procalcitonin (PCT)-based diagnosis of infections complicated by different classes of heart failure

 As depicted, PCT had high areas under the receiver operating characteristic curve in each heart failure group; however, the best cutoff values for each group were different

Wang W, et al. Crit Care. 2014;18(1):R4.

Triggers and Treatment for the Failing Heart

Overview of Acute Therapy

Ultrafiltration: *Aqua/natriuresis*

Nitrates, nitroprusside, dobutamine: Arterial vasodilation

> Nitrates, morphine: Venodilation

Bilevel or continuous positive airway pressure: Preload reduction

Dobutamine, dopamine, milrinone: Increased inotropy

Furosemide: Natriuresis

Allen LA, O'Connor CM. CMAJ 2007;176:797-805.
A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes

Gheorghiade M, Braunwald E. JAMA. 2011;305:1702-1703.

McMurray JJ, et al. Eur Heart J. 2012;14:803-869.

McMurray et al. Eur J Heart Fail 2012; 14:803–69.

Medical Management of Advanced Heart Failure

McMurray JJ, et al. Eur Heart J. 2012;14:803-869.

McMurray et al. Eur J Heart Fail 2012; 14:803–69

Medical Management of Advanced Heart Failure (cont'd)

Congestion at rest (eg, orthopnea, elevated jugular venous pressure, pulmonary rales, S3 gallop, edema)?

Medical Management of Advanced Heart Failure (cont'd)

Congestion at rest (eg, orthopnea, elevated jugular venous pressure, pulmonary rales, S3 gallop, edema)?

The Pathophysiology of Acute Heart Failure

Viau DM, et al. *Heart*. 2015;101(23):1861-1867.

Normotensive Phenotype: Systolic Blood Pressure 100-140 mm Hg

- Primary treatment
 - Diuresis
 - Furosemide
 - Bumetanide
 - Torsemide

Furosemide

- 40-mg intravenous (IV) push
- Age + BUN
- DOSE trial

BUN=blood urea nitrogen.

Diuretic Strategies in Patients With Acute Decompensated Heart Failure

Felker GM, et al. N Engl J Med. 2011;364:797-805.

Diuretic Dosing

End Point	Bolus Every 12 Hours (N=156)	Continuous Infusion (N=152)	P Value	Low Dose (N=151)	High Dose (N=157)	P Value
AUC for dyspnea at 72 hours	4456±1468	4699±1573	0.36	4478±1550	4668±1496	0.04
Freedom from congestion at 72 hr No./total no. (%)	22/153 (14)	22/144 (15)	0.78	16/143 (11)	28/154 (18)	0.09
Change in weight at 72 hr (lb)	-6.8±7.8	-8.1±10.3	0.20	-6.1±9.5	-8.7±8.5	0.01
Net fluid loss at 72 hr (mL)	4237±3208	4249±3104	0.89	3575±2635	4899±3479	0.001
Change in NT-proBNP at 72 hr (pg/mL)	-1316±4364	-1773±3828	0.44	-1194±4094	-1882±4105	0.06
Worsening or persistent heart failure No./total no. (%)	38/154 (25)	34/145 (23)	0.78	38/145 (26)	34/154 (22)	0.40
Treatment failure No./total no. (%)	59/155 (38)	57/147 (39)	0.88	54/147 (37)	62/155 (40)	0.56
Increase in Cr of >0.3 mg/dL within 72 hr No./total no. (%)	27/155 (17)	28/146 (19)	0.64	20/147 (14)	35/154 (23)	0.04
Length of stay – hospital			0.97			0.55
Median (days)	5	5		6	5	
Interquartile range (days)	3-9	3-8		4-9	3-8	
Alive and out of the hospital			0.36			0.42
Median (days)	51	51		50	52	
Interquartile range (days)	42-55	38-55		39-54	42-56	

AUC=area under the curve; Cr=creatinine; NT-proBNP=N-Terminal pro-BNP (brain [or B-type] natriuretic peptide). Felker GM, et al. N Engl J Med. 2011;364:797-805.

Worsening Renal Function Persistent in Both Groups

Hypertensive Phenotype: Systolic Blood Pressure >140 mm Hg

- Primary treatment
 - Nitrates
 - Topical/Sublingual (SL)
 - IV
- Secondary treatment
 - Diuretics

- Nitroglycerin (NTG)
 - Typical infusion range: 10-20 mcg/min
 - Increase by 5 mcg/min every 5 min as needed up to 400 mcg/min

High dose

	Re	peat	2	mg	bol	lus
--	----	------	---	----	-----	-----

HD=high-dose; ICU=intensive care unit; LOS=length of stay; NSTEMI=non-ST-elevation myocardial infarction; BP=blood pressure.

	HD NTG	Controls	P Value
Mechanical vent	20.7%	46.7%	0.023
ICU admit	37.9%	80.0%	<0.001
Hospital LOS (days)	4.1±3.4	6.2±7.3	0.171
NSTEMI	17.2%	28.9%	0.254
Low BP	3.4%	0%	0.210

Levy P, et al. Ann Emerg Med. 2007;50:144-152.

- RELAX-AHF 2 - Serelaxin TRUE AHF – Ularitide BLAST-AHF **- TRV027**
- PRONTO
 - Clevidipine

Disposition

Acute Heart Failure in the Emergency Department (ED)

Low blood pressure (BP), hypoxia, renal insufficiency, cardiac ischemia/infarction

Collins SP, et al. Acad Emerg Med. 2015;22:94-112.

Sample Observation Unit Protocol

Inpatient Management

Therapeutic Goals

<u>Stabilization phase</u> (first 24-48 hours)

- Improve symptoms
- Balance hemodynamics
- Achieve euvolemia
- Avoid harm!
 - Myocyte injury
 - Renal damage
- Implementation phase (>48 hours)
 - Initiate lifesaving interventions
 - Angiotensin-converting enzyme (ACE) inhibitors, β-blockers, etc

Stabilization Phase

Achieve euvolemia

Adjust dose/frequency of diuretics as needed

Monitoring

- Standing weight
- Intake and output (I & O)
- Heart and lung exam
- Electrolytes and renal function
- Telemetry
- Serial inferior vena cava (IVC) measurements/IVC collapsibility index (IVCCI)

Ensure proper medication reconciliation on admission

Medication Reconciliation During Transitions of Care as a Patient Safety Strategy

Identify trigger of exacerbation

- Nonadherence to diet
- Nonadherence to medications
- Progression of disease
- Ischemia
- Arrhythmia

Impact of Medication Nonadherence on Hospitalizations and Mortality in Heart Failure

10 Most Common Pairs of Discrepant Admission and Primary Discharge Diagnosis Codes						
	Admission Diagnosis	Principal Discharge Diagnosis				
Code	Description	Code	Description			
786.05	Shortness of breath	428.08	Congestive heart failure, unspecified			
786.50	Chest pain, unspecified	786.59	Chest pain, other			
786.05	Shortness of breath	486	Pneumonia, organism unspecified			
780.6	Fever	486	Pneumonia, organism unspecified			
780.6	Fever	996.62	Infection and inflammatory reaction due to other vascular device, implant, or graft			
789.00	Abdominal pain, unspecified site	577.0	Acute pancreatitis			
780.6	Fever	599.0	Urinary tract infection, site not specified			
786.05	Shortness of breath	491.21	Obstructive chronic bronchitis with acute exacerbation			
786.05	Shortness of breath	415.19	Pulmonary embolism and infarction, other			
786.05	Shortness of breath	493.22	Chronic obstructive asthma with acute exacerbation			

Implementation Phase: Long-term Therapy

At Risk for Heart Failure (HF)

Heart Failure

Primary and Secondary Outcomes in the PARADIGM-HF Clinical Trial

Minguet J, at al. Exp Opin Pharmacother. 2015;16,:435-446. Copyright © 2015 Informa UK, Ltd.

Sacubitril/Valsartan

Vardeny O, et al. JACC Heart Fail. 2014;2(6):663-670.

Discharge Planning

Is this patient medically ready for discharge today?

BNP, IVC Size,	Collapsibility	in All Patients	and 2 Subgroups
----------------	----------------	-----------------	-----------------

	All Patients		Admission			Discharge			
	Admission	Discharge	P Value	No Readmit	Readmit	P Value	No Readmit	Readmit	P Value
BNP (pg/mL)	6139 (9714)	3497 (4824)	-	6177 (10,091)	5982 (9208)	-	2106 (3298)	4888 (5112)	-
logBNP	3.8±0.5	3.5±0.6	<.001	3.7±0.6	3.8±0.5	.28	3.3±0.7	3.6±0.4.0	.04
IVCmax (cm)	2.3±0.5	2.0±0.6	<.001	2.2±0.5	2.4±0.4	.02	1.7±0.6	2.3±0.5	.001
IVCsniff (cm)	1.7±0.7	1.2±0.8	<.001	1.5±0.7	1.9±0.6	.03	0.9±0.7	1.5±0.7	<.001
IVCCI (%)	27±21	45±27	<.001	31±23	23±16	.10	57±27	36±22	.002

BNP=brain natriuretic peptide; IVC=inferior vena cava; IVCCI=inferior vena cava collapsibility index; IVCmax=maximum diameter of the inferior vena cava; IVCsniff=minimum diameter of the inferior vena cava; logBNP=log-transformed values for brain natriuretic peptide.

Goonewardena AN, et al. JACC Cardiovasc Imaging. 2008;1(5):595-601.

Factors Associated With Readmission Preventability as Determined by Patient Opinion

	No. (%)					
Martali I.	Total Sample	Preventable Readmission or Undecided	Nonpreventable Readmission	D)/alaa		
	(N=98)	(n=30)	(n=68)	<i>P</i> value		
Felt they were discharged before ready	(n=96)	(n=29)	(n=67)	<.001		
No	67 (70)	9 (31)	58 (87)			
Yes	29 (30)	20 (69)	9 (13)			
Felt all concerns were addressed before discharge	(n=93)	(n=27)	(n=66)	<.001		
No	28 (30)	18 (67)	10 (15)			
Yes	65 (70)	9 (33)	56 (85)			

Howard-Anderson J, et al. JAMA Intern Med. 2014;174(11):1870-1872

Howard-Anderson et al. JAMA Internal Medicine 2014 [10.1001/jamainternmed.2014.4782].

Clear Discharge Instructions

PICT O GRAPHS WITH TH	E NON-WEIGHTED LOW	EST SCORES	PICTO GRAPHS WITH THE HIG	HEST NON-WEI	CHTED SCORES
	Non-Weighted Score	Source	No	on-Weighted Score	Source
	8%	RWJF		100%	Authors
Diabetes Education			Take this drug with food		
	24%	RWJF	"NO MORE THAN"	100%	Authors
Social Service			Do not drink more than 2 liters of fluid per day		
於	30%	RWJF		96%	Authors
Outpatient			Do not operate any machinery while taking this daug	1	

Pictographs with the lowest and highest recognition scores

Discharge Medication Reconciliation

			ALLERGIES	S YOUR	DOCTOR YO	UR PHARMACY
picture R Name: Fred Smith User: fred123@gmail.com		Penicillin	Dr. Robert 1	Thompson Green	brier Pharmacy	
			MORNING	NOON	EVENING	BEDTIME
Pill Name	Used for?	Instructions	7-9am	11-1pm	4-6pm	9-11pm
furosemide 40 mg	Reduce Water	Take 2 pills in the morning and 2 pills in the evening.	2 pills) 2 pills	
Jisinopril 10 mg	High Blood Pressure	Take 1 pill in the morning.	<u>)</u> 1 рііі			
metformin 600 mg	Diabetes	Take 1 pill in the morning and 1 pill in the evening.	1 pill		1 pill	
simvastatin 20 mg	Cholesterol	Take 1 pill at bedtime.) 1 pill
fluoxetine 10 mg	Depression	Take 1 pill every morning for 2 week	s. Then, take 2 pills	s every morning.		

ate Printed: Feb. 15, 201

Effectiveness of Remote Patient Monitoring After Discharge of Hospitalized Patients With Heart Failure: The Better Effectiveness After Transition–Heart Failure (BEAT-HF) Randomized Clinical Trial

Ong MK, et al. JAMA Intern Med. 2016;176(3):310-318. Copyright © American Medical Association. All rights reserved.

Unadjusted and Adjusted Relationships Between Early Physician Follow-up by Quartile and 30-Day All-Cause Readmission

Quartile (% of follow-up)	Unadjusted HR (95% Cl)	P Value	Adjusted HR (95% Cl)	P Value			
Model 1: Early follow-up with a physician							
1 (<32.4)	1 [reference]		1 [reference]				
2 (32.4-37.9)	0.86 (0.78-0.94)	.001	0.85 (0.78-0.93)	<.001			
3 (38.3-44.5)	0.85 (0.76-0.94)	.002	0.87 (0.78-0.96)	.005			
4 (>44.5)	0.87 (0.79-0.95)	.002	0.91 (0.83-1.00)	.05			
Model 2: Early follow-up with a cardiologist							
1 (<4.1)	1 [reference]		1 [reference]				
2 (4.1-7.4)	0.91 (0.82-1.02)	.09	0.92 (0.83-1.02)	.09			
3 (7.5-13.8)	0.91 (0.82-1.00)	.05	0.91 (0.82-1.00)	.05			
4 (>13.8)	0.91 (0.82-1.00)	.06	0.95 (0.85-1.05)	.30			
Model 3: Early follow-up with the same physician							
1 (<13.5)	1 [reference]		1 [reference]				
2 (13.5-17.5)	0.93 (0.84-1.04)	.20	0.96 (.86-1.05)	.36			
3 (18.1-24.1)	0.91 (0.81-1.02)	.11	0.94 (0.84-1.04)	.23			
4 (>24.1)	0.93 (0.83-1.03)	.16	0.97 (0.87-1.08)	.54			
Model 4: 14-Day follow-up with a physician							
1 (<56.6)	1 [reference]		1 [reference]				
2 (56.6-64.5)	0.88 (0.80-0.97)	.01	0.89 (0.81-0.97)	.01			
3 (64.6-70.0)	0.87 (0.78-0.97)	.009	0.90 (0.81-1.00)	.04			
4 (>70.0)	0.87 (0.79-0.96)	.004	0.93 (0.84-1.02)	.13			

HR=hazard ratio. Hernandez AF, et al. *JAMA*. 2010;303(17):1716-1722.

Transition to Outpatient Care

Desai AS, Stevenson LW. Circulation. 2012;126:501-506.
The Diuresis Clinic: A New Paradigm for the Treatment of Mild Decompensated Heart Failure

Sacubitril, which is now coformulated with valsartan in a new combination medication, takes action via a novel pathway by inhibiting neprilysin, which breaks down brain (or B-type) natriuretic peptide (BNP). Which of the following statements is *false* regarding neprilysin?

- A. Neprilysin breaks down atrial natriuretic peptide (ANP), BNP, and C-type natriuretic peptide (CNP)
- B. Neprilysin is an enzyme
- C. N-Terminal pro-BNP (NT-proBNP) is not a substrate for neprilysin
- D. In a clinical trial, valsartan/sacubitril *decreased* BNP levels but *increased* NT-proBNP levels

Which of the following acute heart failure treatments has class I, level A (the best!) supporting evidence?

- A. Angiotensin-converting enzyme (ACE) inhibitors
- B. Nitroglycerin
- C. Furosemide
- **D**. None of the above
- E. A, B, and C

Pre-Activity Assessment Question 3

A 67-year-old man with a history of HFpEF, hypertension (HTN), COPD, and morbid obesity presents short of breath (SOB) and 10 lb heavier. No wheezing; no URI complaints. Heart rate, 87 bpm; BP, 157/85; oxygen saturation, 87% right atrial (RA). No wheezing on exam. Labs show a Cr of 1.1, a troponin of <0.02, and an NT-proBNP level of 288 (previous level was 9000 during a prior hospitalization). CTA of chest was negative for pulmonary embolism (PE) and pneumonia. After providing supplemental oxygen with a nasal cannula, what would be the next best step?

- A. High-dose intravenous (IV) diuretics
- B. IV vasodilator
- C. Steroid, antibiotic, and bronchodilator therapy
- D. Noninvasive positive pressure ventilation

BP=blood pressure; bpm=beats per minute; BUN=blood urea nitrogen; COPD=chronic obstructive pulmonary disease; Cr=creatinine; CTA=computed tomography angiography; HFpEF=heart failure with preserved ejection fraction; URI=upper respiratory tract infection.

76

Pre-Activity Assessment Question 4

Which of the following would be an example of an acute HF patient who could be placed in an observation unit?

- A. A 60-year-old man with a history of myocardial infarctions (MIs) and renal insufficiency who is confused and has cool, mottled extremities.
- B. An 84-year-old woman with minimal residual dyspnea post treatment who has mild dementia and lives by herself.
- C. A 63-year-old woman accompanied by her son (with whom she lives) who responds well to emergency department (ED) treatment and has no high-risk features identified during ED evaluation.
- D. A 71-year-old man who, after treatment in the ED, remains markedly hypertensive with significant dyspnea at rest.

 Thank you for joining us in the CME activity, we hope this presentation was valuable to you and the way you practice.

 Please complete the CME post-test and evaluation to receive your CME credit.