

 Outline

 1
 What are the origins of HFNC?

 2
 What are the mechanisms of action?

 3
 How can high flow be used effectively in your ED? & COVID-19

 4
 Q & A

 3
 4

Q3: Who understands the physics and physiology **supporting** HFNC?

History & background 1214 DECEMBER 7, 1968 PRELIMINARY COMMUNICATIONS THE LANCET tests demo action, max first applic months aft Most of the problems of humidification could be solved) AIR by the use of water-vapour instead of aerosols. This would more nearly reproduce the physiological mechanism of humidification in the respiratory tract. Such a method ases can be ose at high perature and e and easily ing gases in 1 volunteers. amounts of thymic fun Biopsy of : thymic tiss This findin became practicable when the author discovered that gases could be blown into one nostril at 20-30 litres per minute without discomfort, and even without perception, provided that the gas was at <u>body-temperature and 100% saturated</u> with water-vapour. (The highest tolerable flow of dry, lymphocyte phoid tissu oth for con-n of oxygen ; LOMHOLT cool gas is normally regarded as 6-8 litres per minute.) Copenhagen

9

Primary	Pre-Oxygenation before Intubation	Post Extubation	Post Surgery	Respiratory
Respiratory		Respiratory	Respiratory	Support during
Support		Support	Support	Recovery

1	
_	-

Interface	 High flow nasal cannula (HFNC) High flow nasal prongs (HFNP) High flow oxygen (HFO) Humidified high flow nasal cannula (HHFNC) 	
Therapy	High flow therapy (HFT) High flow oxygen/therapy (HFO/T) Humidified high flow therapy (HHFT) Nasal high flow (NHF)	
	Optiflow™ High velocity nasal insufflation (HVNI™) Comfort Flo™	

10

Г

1	What are the origins of HFNC?
2	What are the mechanisms of action?
3	How can high flow be used effectively in your ED?
4	Q & A

Mechanisms of action Respiratory support Patient dead space positive airway pressure Airway hydration Supplemental oxygen

17

18

23

28

29

 Assal high flow in the ED: clinical studies summary

 Image: Strate in the stra

36

	d guidelines for clinical mgmt. of COVID-19
Guideline	Nasal High Flow
WHO	May be used in patients with mild ARDS
NIH	Recommended over NIV in patients with AHRF despite COT
SSC*	Suggest use over COT and NIV in patients with AHRF
ANZICS	Considered for patients with hypoxemia

Guideline	Systematic Reviews w/ Meta	Analyses
WHO		
NIH	Zhao et al. 2017	
	Ou et al. 2017	82% of studies
SSC*	Ni et al. 2018	required flows
	Rochwerg et al. 2019	> 45 L/min
ANZICS	Agarwal et al. 2020	

42

- High partial pressure of blood carbon dioxide PaCO₂ > 45 mmHg, pH < 7.35
- Jeong, Am J Emerg Med. 2015. Retrospective ABG analysis of 81 ED pts with ARF Reduced PaCO₂ and RR in hypercapnic group Increased PaO₂ and SpO₂ for hypercapnic and nonhypercapnic groups

- Ortegiani. Crit Care. 2020.
 9 ctr RCT, 79 pts AECOPD, NHF vs NIV
 NHF non-inferior to NIV as initial ventilatory support
 32% of pts receiving NHF required NIV by 6h

Guidance

- uidance Pantazopoulos. COPD. 2020. Literature review (9 RCTs) and treatment algorithm NHF recommended for patients with pH between 7.25 7.35 escalate to NIV for pH < 7.25

Can the early use of high flow reduce the rate of intubation? Frat et al. 2015 NEJM 39% fewer intubations between NIV and NHF FLORALI Study DESINTS NHF si Primary Respiratory

<section-header><section-header><section-header><complex-block><complex-block>

46

If hypoxemic:
Love levels of blood oxygen
spo₂ < 25%, ABC: Pao₂ < 75mm Hg
Text DM 2015
23 dr RCT, 310 pts AHRF, NHF vs COT vs NV
NHF reduced motality and need for initiabation
Bell: Emerg Med Aust. 2015.
2 dr RCT, 70 pt D pts with acute undifferentiated shorts and the vacuum differentiated shorts and th

When a respiratory compromised patient presents in your ED

47

54

If hypoxemic:	If hypercapnic:
Low levels of blood oxygen • SpO ₂ < 92%, ABG: PaO ₂ < 75mm Hg	High partial pressure of blood carbon dioxide • PaCO ₂ > 45 mmHg, pH < 7.35
Frat. NEJM. 2015. • 23 ctr RCT, 310 pts AHRF, NHF vs COT vs NIV • NHF reduced mortality and need for intubation	Jeong. Am J Emerg Med. 2015. • Retrospective ABG analysis of 81 ED pts with ARF • Reduced PaCO ₂ and RR in hypercapnic group
Bell. Emerg Med Aust. 2015. • 2 ctr RCT, 100 ED pts with acute undifferentiated shortness of breath, NHF vs COT • NHF reduced escalation in ventilatory support	 Increased PaQ₂ and SpQ₂ for hypercapnic and non- hypercapnic groups Cortegiani. Crit Care. 2020. 9 ctr RCT, 79 pts AECOPD, NHF vs NIV
Ischaki. Eur Resp Rev. 2017. • Literature review (99 papers) and treatment algorithm	NHF non-inferior to NIV as initial ventilatory support 32% of pts receiving NHF requiring NIV by 6h
Clinical Practice Guidelines • ESICM, 2020 – recommend HFNC over COT • ACP, 2021 – use HFNC over NIV • SCCM, 2021 – suggest HFNC over NIV	Guidance Pantazopoulos. COPD. 2020. Literature review (9 RCTs) and treatment algorithm NHF recommended for patients with - pH between 7.25 – 7.35 - escalate to NIV for pH < 7.25

What flow rates and ranges are used?

Key:

10 15 20 25 30 35 40 45

ow 🔵 Me

50 55 60

59

56

Re	eviev	I	
	1	What are the origins of HFNC?	
	2	What are the mechanisms of action?	
	3	How can high flow be used effectively in your ED?	COVID-19
	4	Q & A	

Thank you from Fisher & Paykel Healthcare Open for any questions

64